Bad Weather Postpones Ingenuity’s 19th Flight on Mars
Curiosity Sees a Strong Carbon Signature in a Bed of Rocks
Even Tiny Mimas Seems to Have an Internal Ocean of Liquid Water
Tom Cruise Movie’s Producers Aim to Add Film Studio to the Space Station in 2024
The Moon’s Crust was Formed From a Frozen Slushy Magma
If Launched by 2028, a Spacecraft Could Catch up With Oumuamua in 26 Years
Space Flight Destroys Your Red Blood Cells
A new Kind of Supernova has Been Discovered
Ice Peeks out of a Cliffside on Mars
20% of Twilight Observations Contain Satellite Passes

Exoplanet Found With a Highly Eccentric Orbit

The study of extrasolar planets has revealed some interesting things in recent decades. Not only have astronomers discovered entirely new types of planets – Super Jupiters, Hot Jupiters, Super-Earths, Mini-Neptunes, etc. – it has also revealed new things about solar system architecture and planetary dynamics. For example, astronomers have seen multiple systems of planets where the orbits of the planets did not conform to our Solar System.

According to a new study led by the University of Bern, an international team of researchers recently observed a Mini-Neptune (TOI-2257 b) orbiting a red dwarf star roughly 188.5 light-years from Earth. What was interesting about this find was how the small ice giant had such an eccentric orbit, which is almost twice as long as it is wide! This is almost two and a half times as eccentric as Mercury, making TOI-2257 b the most eccentric planet ever discovered!

The study was the work of the SAINT-EX consortium, made up of researchers from the Center for Space and Habitability (CSH) at the University of Bern and the National Center of Competence in Research (NCCR) PlanetS (jointly-run by the University of Bern and Geneva). They were joined by members from the ESA’s European Space Research and Technology Centre (ESTEC), NASA’s Jet Propulsion Laboratory (JPL), the NASA Ames Research Center, and multiple universities and research institutes.

An artist’s rendition of the Transiting Exoplanet Survey Satellite (TESS). Credit: NASA’s Goddard Space Flight Center

For the sake of their study, the team relied on data obtained by the Transiting Exoplanet Survey Satellite (TESS), which observed the red dwarf star TOI-2257 for four months and noticed repeated dips in luminosity. This is known as the Transit Method (Transit Photometry), where periodic dips in brightness are considered to be possible indications of a planet passing in front of its face (aka. transiting) relative to the observer.

However, the gaps between observations during those four months created a measure of uncertainty. While the dips indicated the presence of an exoplanet measuring 2.2 Earth radii, it was unclear if the planet had an orbital period of 176, 88, 59, 44, or 35 days. Hence, the team combined the TESS data with observations from the Search And characterIsatioN of Transiting EXoplanets (SAINT-X), the TRAPPIST-North, and the Fred Lawrence Whipple Observatory (FLWO) telescopes.

The SAINT-EX telescope, in particular, helped confirm the planet’s orbital period after witnessing partial transit after 35 days, followed by many more transits with a period of 35 days. Another 35 days later, SAINT-EX was able to observe the entire transit, which gave us even more information about the properties of the system,” said Robert Wells from the CSH, a co-author on the study involved in the data processing.

This 35-day period indicates that TOI-2257 b orbits within its parent star’s circumsolar habitable zone (HZ), the distance where liquid water can exist on its surface. The shorter orbital period also makes it easier to study this planet since scientists will be able to observe transits regularly, thereby increasing opportunities to measure light from the parent star passing through its atmosphere. This produces spectra, which astronomers can use to determine the chemical composition of the planet’s atmosphere.

An artist’s rendering of five planets orbiting TOI-1233, four of which were discovered using the Transiting Exoplanet Satellite Survey (TESS), an MIT-led NASA mission. dit: NASA/JPL-Caltech

Another facilitating factor about TOI-2257 b’s orbit is its eccentricity, which allows for slow transits in front of its st r. r Ni ole Schanche, a researcher with the CSH and the NCCR who led the research, explained in a recent University of Bern press release:

“We found that TOI-2257 b does not have a circular, concentric orbit. In terms of potential habitability, this is bad news. While the planet’s average temperature is comfortable, it varies from -80°C to about 100°C depending on where in its orbit the planet is, far from or close to the star.”

In our Solar System, Mercury has the most eccentric orbit of any planet, with a rating of 0.2 5. If you were to plot its orbit on a two-dimensional plane, one dimension would be 20% longer than the other. While Pluto’s eccentricity is greater (0.2488), the tyranny of naming conventions prevents us from saying it holds the record (for now!) With an eccentricity of 0.50, TOI 2257 b’s orbit is 50% longer along its Earth-facing axis.

According to Schanche and her colleagues, a possible explanation is that another giant planet lurking in the outer system is disturbing the orbit of TOI 2257 b. Further observations will be needed using the Radial Velocity Method (aka. Doppler Spectroscopy) to determine if other exoplanets are orbiting this star, as indicated by the gravitational influence they have on it. This method remains one of the most effective methods and is used wherever transits are not likely to be observed.

The peculiar nature of TOI 2257 b also makes it a good candidate for follow-up observations with the James Webb Space Telescope (JWS ). Using its advanced suite of infrared optics, the JWST will observe spectra from transiting exoplanets and characterize their atmospheres. Those planets with a good transmission spectroscopy metric (TSM) will have priority when the JWST begins to gather light, and TOI-2257 b is one of the most attractive sub-Neptune targets!

Webb’s primary mirror intercepts red and infrared light traveling through space and reflects it onto a smaller secondary mirror. The secondary mirror then directs the light into the scientific instruments, where it is recorded. Credits: IM E: STScI, Andi James (STScI)

Further Reading: University of Bern, Astronomy & Astrophysics

Leave a Reply

Your email address will not be published. Required fields are marked *